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The visual motion of curves and surfaces

By Roberto Cipolla

Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

For smooth curved surfaces the dominant image feature is the apparent contour, or
outline. This is the projection of the contour generator, the locus of points on the
surface which separate visible and occluded parts. The contour generator is depen-
dent of the local surface geometry and the viewpoint. Each viewpoint will generate
a different contour generator. This paper addresses the problem of recovering the
three-dimensional shape and motion of curves and surfaces from image sequences of
apparent contours.

For known viewer motion the visible surfaces can then be reconstructed by exploit-
ing a spatio-temporal parametrization of the apparent contours and contour genera-
tors under viewer motion. A natural parametrization exploits the contour generators
and the epipolar geometry between successive viewpoints. The epipolar parametriza-
tion leads to simplified expressions for the recovery of depth and surface curvatures
from image velocities and accelerations and known viewer motion.

The parametrization is, however, degenerate when the apparent contour is singular
since the ray is tangent to the contour generator and at frontier points when the
epipolar plane is a tangent plane to the surface. At these isolated points the epipolar
parametrization can no longer be used to recover the local surface geometry. This
paper reviews the epipolar parametrization and shows how the degenerate cases can
be used to recover surface geometry and unknown viewer motion from apparent
contours of curved surfaces. Practical implementations are outlined.

Keywords: epipolar geometry; apparent contour; cusps; frontier points

1. Introduction

Structure and motion from image sequences of point features has attracted consid-
erable attention and a large number of algorithms exist to recover both the spatial
configuration of the points and the motion compatible with the views. A key com-
ponent of these algorithms is the recovery of the epipolar geometry between distinct
views (Luong & Faugeras 1996). The structure and motion problem for curves and
curved surfaces is more challenging. For curved surfaces the dominant image feature
is the apparent contour which is the projection of the curve on the surface (contour
generator) dividing visible and occluded parts. The contour generator is dependent
on viewpoint and local surface geometry (via tangency and conjugacy constraints)
and each viewpoint will generate a different contour generator. The image curves
are therefore projections of different space curves and there is no correspondence
between points on the curves in the two images.

The family of contour generators generated under continuous viewer motion can
be used to represent the visible surface. Giblin & Weiss (1987) and Cipolla & Blake
(1992) have shown how the spatio-temporal analysis of deforming image apparent

Phil. Trans. R. Soc. Lond. A (1998) 356, 1103–1121
Printed in Great Britain 1103

c© 1998 The Royal Society
TEX Paper

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1104 R. Cipolla

(a) (b)

Figure 1. The apparent contours of a curved surface from two different viewpoints. The apparent
contours from different viewpoints are projections of different surface curves. The apparent
contour can be singular, seen here as the visible apparent contour ending abruptly (b).

Figure 2. Viewing geometry and parametrization of the surface. For each viewpoint, c, the
family of rays which are tangent to the surface define the contour generator, Γ . The image of
the contour generator is called the apparent contour, γ. A surface point, r, has position c+λp
where λ is the distance from the viewing centre along a ray with direction given by the unit
vector p.

contours or outlines enables computation of local surface curvature along the cor-
responding contour generator on the surface. To perform the analysis, however, a
spatio-temporal parametrization of image-curve motion is needed, but is under-
constrained. The epipolar parametrization is most naturally matched to the recovery
of surface curvature. In this parametrization (for both the spatio-temporal image and
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the surface), correspondence between points on successive snapshots of an apparent
contour and contour generator is set up by matching along epipolar lines and epipo-
lar planes respectively. The parametrization leads to simplified expressions for the
recovery of depth and surface curvature from image velocities and accelerations and
known viewer motion.

There are, however, several cases in which this parametrization is degenerate and
so can not be used to recover the local surface geometry. The first case of degeneracy
occurs at a point of the surface-to-image mapping when a ray is tangent not only
to the surface but also to the contour generator. This will occur when viewing a
hyperbolic surface patch along an asymptotic direction. For a transparent surface
this special point on the contour generator will appear as a cusp on the apparent
contour. For opaque surfaces, however, only one branch of the cusp is visible and the
contour ends abruptly (Koenderink & Van Doorn 1982).

The other case of degeneracy of the epipolar parametrization occurs when contour
generators from subsequent viewpoints intersect to form an envelope. This occurs
when the epipolar plane is also a tangent plane to the surface. These isolated sur-
face points are called frontier points (Giblin & Weiss 1994). The surface can not
be reconstructed at these points by the epipolar parametrization since the contour
generator is locally stationary. However, the frontier points correspond to real, fixed
feature points on the surface which are visible in two views. They can be used to
recover the viewer motion.

This paper addresses the problem of recovering the three-dimensional (3D) shape
and motion of curves and surfaces from image sequences of apparent contours. As
with point features, the epipolar geometry plays an important role in both the recov-
ery of the motion and in the reconstruction of the surface.

2. Reconstruction under known viewer motion

(a) Viewing geometry

Consider a smooth surface M . For each vantage point, c, the sets of points, r, on
the surface for which the visual ray is tangent to M can be defined. This is called
the contour generator, Γ , and is the set of points r for which

(r − c) · n = 0, (2.1)

where n is the unit normal to the surface at r (figure 2). The contour generator is
usually (but not always, see § 3) a smooth curve on the surface separating the visible
from the occluded parts and can be parametrized using say s as a parameter.

The image, γ, of the contour generator, Γ , is called the apparent contour or
outline and is the intersection of the set of rays which are tangent to the surface and
the imaging surface. Without loss of generality and for mathematical simplicity, we
consider perspective projection onto the unit sphere. An apparent contour point, p
(a unit vector specifying the direction of the visual ray), satisfies

r = c+ λp, (2.2)
p · n = 0, (2.3)

where λ is the distance along the ray to the surface point, r, from the position of
the centre of projection c.
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Figure 3. Epipolar parametrization. The surface is parametrized locally by the contour genera-
tors from successive viewpoints and epipolar curves defined by the intersection of the pencil of
epipolar planes and the surface. The parametrization is only possible if the contour generators
are not singular and are transverse to the epipolar curves. The parametrization is degenerate at
cusp and frontier points.

(b) Spatio-temporal parametrization

Each viewpoint will generate a different contour generators on the surface M . A
moving monocular observer with position at time t given by c(t), will generate a
one parameter family of contour generators, indexed by time, Γ (t). It is natural to
attempt a parametrization of M which is ‘compatible’ with the motion of the camera
centre, in the sense that contour generators are parameter curves. We want there to
exist a regular (local) parametrization of M of the form (s, t)→ r(s, t), where the set
of points r(s, t0), for fixed t0 (i.e. the s-parameter curve), is the contour generator
from viewpoint c(t0). The set of points p(s, t0) is the corresponding apparent contour
on the unit sphere at the viewpoint; the actual apparent contour points in space are
c(t0) + p(s, t0). Note that (2.2) and (2.3) become

r(s, t) = c(t) + λ(s, t)p(s, t), (2.4)
p(s, t) · n(s, t) = 0. (2.5)

However, the spatio-temporal parametrization of the apparent contours, p(s, t),
and the surface, r(s, t), is not unique. The choice of the t-parameter curves, p(s0, t)
and r(s0, t), for fixed s0, is under-constrained.

(c) Epipolar parametrization

A natural choice of parametrization is the epipolar parametrization. In this para-
metrization the correspondence between points on successive snapshots of an appar-
ent contour and contour generator are set up by matching along epipolar planes.
Namely the corresponding ray in the next viewpoint (in an infinitesimal sense), is
chosen so that it lies in the epipolar plane defined by the viewer’s translational motion
and the ray in the first viewpoint (figure 3).
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0 1 2

B A

Figure 4. Estimating surface curvatures from three discrete views. Points are selected on image
contours in the first view (t0), indicated by crosses A and B for points on an extremal boundary
and surface marking respectively. For the epipolar parametrization of the surface corresponding
features lie on epipolar lines in the second and third view (t1 and t2). Measurement of the
three rays lying in an epipolar plane can be used to estimate surface curvatures. Point B can be
considered as a degenerate surface point with infinite curvature.

The epipolar parametrization is defined by (Cipolla & Blake 1992)
rt ∧ p = 0 (2.6)

and leads to the following epipolar matching condition,
[pt, ct,p] = 0, (2.7)

such that the t-parameter curves are defined to lie instantaneously in the epipolar
plane defined by the ray and direction of translation. The parametrization leads to
simplified expressions for the recovery of depth and surface curvature. By simple
manipulation of equations (2.4) to (2.7) and their spatial and temporal derivatives
(denoted below by subscripts s and t) it is easy to show that the local surface
geometry can be recovered from spatio-temporal derivatives (up to second order) of
the apparent contours and the known viewer motion as follows:

1. The orientation of the surface normal, n, can be recovered from a single view
from the vector product of the ray direction, p and the tangent to the apparent
contour, ps:

n =
p ∧ ps
|p ∧ ps| . (2.8)

2. If the contour generator is smooth at r then its tangent is in a conjugate
direction (with respect to the second fundamental form) to the visual ray p
and

p · ns = 0. (2.9)

3. Under viewer motion and the epipolar parametrization, a given point on a
contour generator, r, will slip over the surface with velocity given by rt and
which depends on the distance, λ, and surface curvature (normal curvature in
direction of the ray):

rt = −
(ct · n
λκt

)
p. (2.10)

Note that the velocity is inversely proportional to the surface curvature and
is zero in the limiting case of viewing a space curve or crease. The latter can
be simply treated as apparent contours with infinite curvature along the ray
direction.
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Figure 5. The epipolar plane. Each view defines a tangent to r(s0, t). For linear camera motion
and epipolar parametrization the rays and r(s0, t) lie in a plane. If r(s0, t) can be approximated
locally by its osculating circle, it can be uniquely determined from measurements in three views.
For curvilinear motion the epipolar geometry is continuously changing and the epipolar curve
is no longer planar.

4. Depth (distance along the ray, λ) can be computed from the deformation of
the apparent contour, (pt), under known viewer motion (translational velocity
ct):

λ = − ct · n
pt · n . (2.11)

5. The Gaussian curvature at a point on the apparent contour, K, can be recov-
ered from the depth, λ, the normal curvature κt along the line of sight and the
geodesic curvature of the apparent contour, κp:

K =
κpκt

λ
. (2.12)

Since the normal section in the direction of the ray must always be convex at a
point on the apparent contour, the sign of the Gaussian curvature is determined
by the sign of the curvature of the apparent contour. Convexities, concavities
and inflections of an apparent contour corresond to elliptic, hyperbolic and
parabolic surface points respectively (Koenderink 1984).

Figures 4–6 illustrate the epipolar parametrization and the reconstruction of a
strip of surface at the contour generator. Details of the camera calibration and the
detection and tracking of the apparent contours with B-spline snakes can be found
in Cipolla & Blake (1992) and Boyer & Berger (1997).
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(a) (b)

Figure 6. Recovery of surface strip in vicinity of apparent contour. The surface is recovered as
a family of s-parameter curves, the contour generators, and t-parameter curves, portions of the
osculating circles measured in each epipolar plane. The strip is shown projected into the image
of the scene from a different viewpoint and after extrapolation (Cipolla & Blake 1992).

3. Degenerate cases of the epipolar parametrization

There are two possible cases where degeneracy of the parametrization arises. These
occur when the contour generators and epipolar curves are singular or not transverse,
i.e. {rs, rt} fails to form a basis for the tangent plane of the surface:

rs ∧ rt = 0. (3.1)

The first case occurs when r is a hyperbolic surface point viewed along an asymp-
totic direction. The apparent contour is singular (a cusp is generated), seen as a
contour-ending for opaque surfaces. The second case occurs when r is a frontier
point. The epipolar plane (spanned by the velocity vector ct(t) of the viewpoint and
the ray p) coincides with the tangent plane to M and the contour generators form
an envelope on M .

(a) Singular apparent contours

The most common case of degeneracy occurs when viewing a hyperbolic surface
point along an asymptotic direction (figure 7). The ray grazes the surface with 3-point
contact and is tangent to the contour generator, rs∧p = 0. For a transparent surface
this special point on the contour generator (the cusp generator point) will appear as
a cusp on the apparent contour with ps = 0. For opaque surfaces, however, only one
branch of the cusp is visible and the apparent contour ends abruptly (Koenderink &
Van Doorn 1982).

Cusps (or contour-endings as they appear for opaque surfaces) are stable phenom-
ena and they persist under viewer motion. In any generic view of a curved surface we
expect to see smooth apparent contours with a finite number of singularities (cusp or
contour-ending) and T-junctions. Under viewer motion the generic events that are
visible consist of cusps being created or annihilated in pairs. These are described in
Koenderink & Van Doorn (1976) and Koenderink (1990) and illustrated in figures 8
and 9.

The epipolar parametrization can no longer be used to recover the depth and
surface curvature at cusp points. In fact the cusp points have a component of motion
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c

(a)

(b)

Figure 7. (a) The asymptotic directions of a hyperbolic and parabolic surface point. (b) The
visual ray has 3-point contact with the surface when viewing a hyperbolic surface point along one
of its asymptotic directions. The contour generator and ray are parallel and a cusp is generated
in the apparent contour. Only one branch of the cusp is visible for an opaque surface and the
apparent contour ends abruptly.

out of the epipolar plane and so can not be localized on corresponding epipolar lines
in the different views. The cusp point in the image can, in principle, be localized and
tracked under viewer motion, and if its trajectory is smooth and can be parametrized
by t, p(t), it can be used to induce an alternative parametrization of the surface in
the vicinity of the cusp generator (Cipolla et al . 1997).

At a cusp, the cuspidal tangent is given by pss (since ps = 0) and the surface
normal, depth and Gaussian curvature can be recovered as follows:

n =
p ∧ pss
|p ∧ pss| , (3.2)

λ = − ct · n
pt · n , (3.3)

K =
−(pt · n)4

[p, ct,pt]2
. (3.4)

Note that the Gaussian curvature can be recovered from first-order derivatives only.
Compare this to a normal apparent contour point that requires second-order spatio-
temporal derivatives of viewpoint and apparent contour.
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(a) (b)

Figure 8. (a) The swallowtail transition. A smooth apparent contour develops a pair of cusps
and a T-junction under viewer motion. For opaque surfaces only one branch of one of the cusps
is visible and the smooth apparent contour comes to a sudden end. (b) The transition occurs
at an asymptotic direction of a flecnodal surface point. The ray has 4-point contact with the
surface, (a).

(b) Frontiers and epipolar tangencies

The remaining case of degeneracy of the epipolar parametrization occurs for epipo-
lar planes (spanned by the direction of translation and the ray) which coincide with
tangent planes to the surface. This will occur at a finite set of points on the surface
where the surface normal n is perpendicular to the direction of translation:

ct · n = 0. (3.5)

From (2.10) we see that the contour generator is locally stationary (rt = 0). In
fact (see figure 10) consecutive contour generators will intersect at points where the
epipolar plane is tangent to the surface.

The points of contact on the surface are called frontier points because for con-
tinuous motion the locus of intersections of consecutive contour generators in an
infinitesimal sense define a curve on the surface which represents the boundary of
the visible region swept out by the contour generators under viewer motion.

For larger discrete motions the contour generators defined by the discrete view-
points also intersect at points on the surface where the epipolar plane is tangent to
the surface. This is easily seen if we consider the motion to be linear. ct is then a
constant vector, and the frontier point on the surface at time t satisfies the frontier
condition at subsequent times. The frontier degenerates to a point on the surface. In
the discrete case the frontier points are defined by the condition

∆c · n = 0, (3.6)

where ∆c = c(t2) − c(t1) and n is the surface normal at the point in which in the
two contour generators for each viewpoint intersect.

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1112 R. Cipolla

Figure 9. The ‘lips’ and ‘beaks’ visual events. The contour generators are singular (an isolated
point in the lips transition; a crossing in the case of the beaks transition) when viewing a
parabolic surface point along its asymptotic direction. A pairs of cusps are generated under
viewer motion.

The frontier point projects to a point on the apparent contour in both views such
that its tangent passes through the epipole. It is an epipolar tangency point since
the tangent plane is also the epipolar plane.

The surface curvature can not be recovered by the epipolar parametrization at
these points since the contour generator is locally stationary. However, frontier points
correspond to real, fixed feature points on the surface which are visible in both views,
once detected they can be used to provide a constraint on viewer motion. In fact they
can be used in the same way as points in the recovery of the epipolar geometry via
the epipolar constraint.

4. Recovery of viewer motion

(a) Parametrization of the fundamental matrix

The epipolar geometry between two uncalibrated views is completely determined
by seven independent parameters: the position of the epipoles in the two views
(ue, ve, 1)T and (u′e, v

′
e, 1)T and the three parameters of the homography relating

the pencil of epipolar lines in view 1 to those in view 2,

τ ′ = −h2τ + h1

h4τ + h3
, (4.1)

where τ and τ ′ represent the directions of a pair of corresponding epipolar lines in
the first and second images respectively. The transformation is fixed by three pairs
of epipolar line correspondences (Luong & Faugeras 1996).

The epipolar geometry can be conveniently specified by the fundamental matrix,
F (3 × 3 matrix defined up to an arbitrary scale and of rank two), such that the
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apparent contour

contour generator
epipolar plane

epipolar
tangency

(t2)

(t1)

epipole

Γ

Γ

c(t2)
c(t1)

m m'

e'e

frontier point

Figure 10. A frontier point appears the intersection of two consecutive contour generators and
is visible in both views. The frontier point projects to a point on the apparent contour which is
an epipolar tangency point.

image coordinates (projective representation) of a pair of corresponding points, m
and m′, must satisfy the epipolar constraint:

m′TFm = 0 (4.2)

and where the left and right epipoles (e and e′) are given by the null space of F and
FT respectively.

This gives the following parametrization of the fundamental matrix:

F =

 h1 h2 −ueh1 − veh2
h3 h4 −ueh3 − veh4

−u′eh1 − v′eh3 −u′eh2 − v′eh4 ueu
′
eh1 + veu

′
eh2 + uev

′eh3 + vev
′eh4

 .

(b) Finding the epipoles

Under pure translation the epipolar geometry is completely determined by the
position of the epipole in a single view. The position of the epipole is the same in
both views if the intrinsic parameters do not change and the epipolar lines have the
same directions and are auto-epipolar. The bitangents at two consecutive apparent
contours are epipolar tangencies and hence the projection of frontier points. The
intersection of at least two distinct tangencies (epipolar lines) determines the position
of the epipole. See figure 13 (Sato & Cipolla 1998).
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Figure 11. Epipolar geometry and epipolar tangencies under arbitrary motion.
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Figure 12. The epipolar geometry of an uncalibrated stereo pair of images is completely specified
by the image positions of the epipoles and three pairs of corresponding epipolar lines. The
projective parameters τ and τ ′ represent the intersection of the epipolar line and the line at
infinity. The directions in the two views are related by a homography.

The solution is no longer trivial in the case of arbitrary motion with rotation.
There is in fact no closed form solution since the epipoles are needed to define the
epipolar tangency points (and frontier points) and these are needed to determine the
epipoles.
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e

m2

l

m1

(a) (b)

Figure 13. Under pure translation the frontier/epipolar tangency point moves along the epipolar
line since the position of the epipole and the direction of the epipolar lines do not change. From
a minimum of two bitangents of the apparent contour in two views (a) it is possible to recover
the epipole, e, and hence to reconstruct the strip of visible surface at the apparent contour (b).

(c) Optimization

The solution proceeds as a search and optimization problem to find the position
of the epipoles in both views such that the epipolar tangencies in the first view are
related to the set of epipolar tangencies in the second view by a one-dimensional
homography (Cipolla et al . 1995).

A suitable cost function is needed. A geometric criterion (distance) is used in the
estimation of the fundamental matrix from point correspondenes and can also be
used in the case of curves. The geometric distance is computed as the sum over
all tangency points of the square of the distance between the image point and the
corresponding epipolar line from the tangency point in the other view.

The key to a successful implementation is to ensure that the search space is reduced
and that the optimization begins from a good starting point using approximate
knowledge of the camera motion or point correspondences. The solution proceeds as
follows:

1. Start with an initial guess or estimate of the epipoles in both views.

2. Compute the epipolar tangencies, m(e) and m′(e′), in both views respectively.
These are points on the apparent contours with tangents passing through the
epipole.

3. Estimate the elements of the homography between the pencil of tangencies in
both views. This can be done linearly by minimizing∑

i

(h4τiτ
′
i + h3τ

′
i − h2τi − h1)2 (4.3)

by the method of least squares over all pairs of correspondences (τ and τ ′).

4. The fundamental matrix is now given by the parametrization above and the
distance criterion (i.e. sum of squared distances between tangency point and
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(a)

(b)

Figure 14. Starting point for optimization (a). An initial guess of the position of the epipoles is
used to determine a finite set of epipolar tangencies in both views and the homography relating
the two set of epipolar lines. For each tangency point the corresponding epipolar line is drawn
in the other view. The distances between epipolar lines and tangecy points is used to search
for the correct positions of the epipoles. Convergence to local minimum after five iterations (b).
The epipolar lines are now tangent to apparent contours in both views.

corresponding epipolar line) can be computed:

C =
∑
i

(
1

(Fmi)2
1 + (Fmi)2

2
+

1
(FTm′i)

2
1 + (FTm′i)

2
2

)
(m′Ti Fmi)2.

5. Minimize the distance by the conjugate gradient method. The search space is
restricted to the four coordinates of the epipoles only. This requires the first-
order partial derivatives of the cost function with respect to the coordinates
of the epipoles which can be computed analytically but are more conveniently
estimated by numerical techniques.

At each iteration of the algorithm, steps 1 to 4 are repeated, and the positions of
the epipoles are refined. The search is stopped when the root-mean-square distance
converges to a minimum (usually less than 0.1 pixels). It is of course not guaranteed
to find a unique solution.
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(a) (b)

Figure 15. Local minimum obtained by iterative scheme to estimate the epipolar geometry
from eight epipolar tangencies.

Several of the experiments were carried out with simulated data (with noise) and
known motion (figure 14). The apparent contours were automatically extracted from
the sequence by fitting B-splines to the image edge data (Cham & Cipolla 1996).
Five to ten iterations each for four different initial guesses for the position of the
epipole were sufficient to find the correct solution to within an root-mean-square
error of 0.1 pixel per tangency point.

Figure 15 shows an example with real data whose apparent contours are detected
and automatically tracked using B-splines snakes. A solution is found very quickly
which minimizes the geometric distances but as with all structure from motion algo-
rithms, a limited field of view and small variation in depths result in a solution which
is sensitive to image localization errors.

5. Conclusions and future work

The recovery of the epipolar geometry between views is a key part of any algorithm
to recover the 3D structure and motion compatible with the views. The structure
and motion problem for curves and surfaces is more challenging since the apparent
contours are viewpoint dependent and the correspondence of points between the two
viewpoints in not given.

We have shown how the viewer motion can be recovered from the outlines (appar-
ent contours) of curved surfaces by searching for epipolar tangency points. The results
of initial experiments using these algorithms have been promising but the perfor-
mance of the algorithm remains to be fully evaluated and it is still unclear whether
the extraction of the motion leads to a unique solution. After computing the motion
the epipolar geometry can be exploited to parametrize the apparent contours and to
recover the visible surface.

We have only used apparent contours in the motion estimate. In practice one
would use a combination of image features to estimate motion and could then use
the apparent contours to reconstruct the surface. An important test of the usefulness
of the proposed theories will be the accuracy of the reconstruction of an arbitrarily
curved surface from uncalibrated viewer motion.

I acknowledge the support of the EPSRC. The research on following cusps and frontiers was
carried out at the Isaac Newton Institute for Mathematical Sciences and the Department of
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Discussion

H. C. Longuet-Higgins (Laboratory of Experimental Psychology, University of
Sussex, Brighton, UK ). From what has been said, one might think that the problems
are solved, but one cannot help feeling that there are many ‘nasties’ in the real world
which will defy a neat analysis. An example would be an irregular scene such as a
hedge, from which it is difficult to extract tangents. How restrictive are the conditions
under which this analysis holds?

R. Cipolla. We must be able to fit B-splines to the curves and surfaces that we are
looking at and be able to give them a geometric representation. They must therefore
be projections of some geometric entities.

P. Giblin (Department of Mathematical Sciences, University of Liverpool, UK ).
That is also only half the problem. In most cases we do not know if the recovery
is unique. Only in the special cases of circular motion and parallel projection is
there any rigorous theory which can show uniqueness. All my attempts at proving
uniqueness in the general case have failed. One is very likely to get stuck in local
minima.

R. Cipolla. Yes, indeed it is much worse than extracting structure from motion
from points. With curves the problem is compounded.

P. H. S. Torr (Department of Engineering Science, University of Oxford, UK ).
Given that the work details recovery of the motion using the occluding contour or
outline of smooth or differentiable surfaces, how is it determined whether or not an
apparent contour observed arises from a smooth surface or a crease?

R. Cipolla. The key idea here is that the parametrization depends upon the epipo-
lar geometry, which is the same for creases, edges of polyhedral objects or curved
surfaces. So, we automatically get some measure of curvature; if it is a crease, it will
have infinite Gauss curvature.

O. Faugeras (INRIA, France). I have a question relating to the numerical stability
of the process. Is there, for the occluding contours, any analogue to the critical
surfaces that we know to exist for the fundamental matrix F , and what can we say
about the stability of the reconstruction?

R. Cipolla. Currently, the main instability we experience is due to poor localization.
However, I am sure that it is the case that there exist some surfaces for which
degeneracy results if reconstruction is attempted for contour generators lying on
such surfaces.

P. Giblin. That is a very good and natural question, but we currently don’t know
anything about the possible existence of such surfaces.

A. Fitzgibbon (Department of Engineering, University of Oxford, UK ). What is
the minimum structure needed for reconstruction?

R. Cipolla. The requirements are the same as those for reconstruction from points,
i.e. for pure translation we would need two epipolar tangencies, for weak perspective,
four, and for uncalibrated perspective, seven.
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Figure 16. (a) A cusped apparent contour, with the occluded part dashed. (b) Two cusps and
a T-junction which can merge into one at a ‘swallowtail transition’, when the viewline has an
extra degree of contact with the surface (4 point contact altogether).

G. Hunter (St Mary’s University College, Twickenham, UK ). Has anyone con-
sidered the corresponding problem for binocular vision? Although the mathematics
would become more complicated, one would get some impression of depth.

R. Cipolla. Jean Ponce has worked on the trinocular case. But what I have pre-
sented here is actually the motion from stereo views. It is only when it comes to
reconstruction that one needs the information from three views or a knowledge of
the infinitesimal accelerations.

A. Hopper (The Olivetti & Oracle Research Laboratory, Cambridge, UK ). What is
the stability with respect to recognizable targets? For example, if some target was
painted on the object, would this make it easier for the algorithms, or would it make
no difference?

R. Cipolla. It is obviously much easier to track and reconstruct targets. Often
with targets it is not just points which are important, commercial companies use
reflective spheres. In this case we should still be looking at the motion of apparent
contours but the distances are often such as to make it reasonable to consider only
the centroids of the contours to track.

H. C. Longuet-Higgins. Is it possible to distinguish cusps from T-junctions pro-
duced by occlusions?

P. Giblin. The two cases are different but related. I can best explain by means
of a drawing (figure 16). When two cusps are about to merge and disappear in a
‘swallowtail transition’ there is indeed a T-junction close to the positions of the two
cusps. Otherwise at a cusp there is an actual ending of the contour, without the
presence of a second branch as in the T-junction.

K. Stark (Technical University, Dresden, Germany). How is the minimum number
of B-spline control points decided upon?

R. Cipolla. For a fixed number of control points one always wants to minimize the
error between the B-spline and the edge data. In general then, one would approximate
a curve segment by straight lines and then for each line increase the number of control
points until the error no longer decreases. Some recent work by T.-J. Cham has looked
at this problem of choosing the optimum number and position of control points using
the MDL criterion.
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M. Isard (Robotics Group, University of Oxford, UK ). Does the original image
have to be chosen carefully to get the right number of features? For example, if the
features come and go, there will be too few control points.

R. Cipolla. Yes, there are big problems using B-splines as snakes. Basically, one
has to keep on reinitializing on events. It is always easy to add more control points
but very hard to cope with major topological changes.

T. Ihle (Technical University, Dresden, Germany). I have a question concerning
the detection of frontier points. In the case of translation and rotation of the camera
we cannot use the bitangency algorithm to detect the frontier points. In another case
of a screw transformation the frontier points may not be defined between the two
images. Can these two different cases be distinguished and exploited?

P. Giblin. We have problems if we don’t know the camera motion. In this case a
search (with an initial guess at the epipole) is required each time—rather an inelegant
solution.
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